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A representation is obtained for a weak solution of a hyperbolic system of partial differen- 
tial equations in two variables with the mixed initial and boundary values being specified. The 
procedure is based on obtaining and inverting the Stiehjes transform of the solution. A 
numerical scheme to approximate the solution is developed, based on some properties of the 
representation and the method of characteristics. The method is illustrated by considering the 
equations that describe fluid flow in an ideal shock tube. ‘e 1987 Academc Press. Inc. 

1. INTR~DUCTTON 

Considerable attention has been paid to developing methods to obtain numerical 
approximations to the solutions of quasi-linear, hyperbolic partial differential 
equations. In the classical method of characteristics, the quasi-linearity is exploited 
to reduce the problem to approximating the fixed point of an integral operator [I, 
p. 4641. The characteristic curves are determined by solving ordinary differential 
equations. Numerical approximations to the derivatives and the integrals encoun- 
tered reduce the formalism to a computational procedure [2]. In a finite difference 
scheme, which covers a large number of procedures, the original partial differential 
equation is discretized by replacing the derivatives by some finite difference 
approximations to them. Numerical experimentations with some of the earlier 
methods demonstrated that they tend to smear the discontinuities of the solutions 
or introduce spurious oscillations to an unacceptable degree [3,4]. Subsequent 
improvements over the earlier techniques, which have grown into a large body of 
literature, overcame these difficulties to a large extent. Also, some convergence 
results have been obtained for a few of the methods falling in this category [5,6]. 
The random choice method of Glimm [7] was developed from the Riemann 
representation of the solution [ 1, p. 4531. This scheme enables one to assume a dis- 
continuous profile for an approximate solution. In a numerical experiment with an 
ideal shock tube, the procedure was found to approximate the solution reasonably 
well, except for the location of the discontinuities [3]. However, this method takes 
two to three times more computing time than the finite difference schemes con- 
sidered in Ref. [3] and it is complicated to use. 
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In the present article, we consider a hyperbolic system of quasi-linear differential 
equations in two variables, with mixed initial and boundary values being specified. 
A representation of the solution is obtained by constructing and inverting its 
Stieltjes transform, which is well defined for a function of bounded variation. 
Quasi-linearity combined with the representation yields a fixed point equation for 
the solution. The formalism is then reduced to a computationally feasible form by 
comparing it with the method of characteristics. In view of some of the properties of 
the transform and the resulting representation, one may assume a discontinuous or 
a piecewise continuous profile for the approximation. Two approximations thus 
obtained, may be combined to yield an improved approximation (cf. Appendix). A 
scheme is developed to obtain the approximate values numerically and illustrated 
by considering the conservation laws describing fluid flow in an ideal shock tube. 

2. THE STIELTJES TRANSFORM 

Some standard properties of the Stieltjes transform that will be needed are stated 
here. Let /z(x) be a function of bounded variation; then H(z), defined by the Stieltjes 
integral 

(1) 

is called the Stieltjes transform of dh. Here a = -cc and b = rxi are allowed. The 
function H(z) is analytic in the complement of [a, b]. If h(x) is constant on any 
subinterval of [a, b], it is included in the region of analyticity of H(z). According to 
the Stieltjes inversion formula [S], 

(2a) 
x-i 

tan-’ - , 
& 1 

where h(x) = +[lz(x + 0) + h(x - 0)] and [a’, b’] is any interval included in [a, b] 
that includes [r, s]. It is clear that, at all points of its continuity, h(x) = h(x) and, if 
x is a point of discontinuity, then h(x) is the mean of the left and right limits. With 
this understanding, the bar from h(x) will be dropped. The inversion formula deter- 
mines h(x) uniquely at all of its points of continuity except for an additive constant. 
By observing that H(z*) = H*(z), (2a) may be written as 

(2b) 

where r,, denotes the contour running from s to r on the upper side of the real axis 
and from r to s on the lower side. 
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Let P,(X), n = 0: 1, 2, . . . be the orthogonal polynomials associated with dk Then 
H,,(z), given by 

1 
Hr7(z) = P,(z) -J *b dh(x) 

P,(x) - P,(z) 

a x-z 5 

defines the [n, n] Pade approximant to H(Z) [9] and H,(z) -+,>+ 7J H(T) for each E 
in the complement of [a, 61. Also [S] 

and, with a continuous g(s), 

(4b) 

The zeros of the polynomials P,,(X) are in [a, b]; as a consequence, h,(x) is a 
step function with jump discontinuities located at the zeros. Some flexibility can be 
exercised in locating the discontinuity points [lo]; however, since this 
approximation provides only a motivation for the one used here, we shall not 
elaborate on it further. 

3. REPRESENTATION OF THE SOLUTION 

Consider a hyperbolic system of quasi-linear partial differential equations in 
variables t in [0, T] and x in [0, 11: 

g + A(x, t; @) g = 3(x, t; @), (5a) 

where @, 3 are m-vectors and 2, an rn x m matrix with real eigenvalues. Let 4 be 
defined by 

qb=cp'(x, t)-(1-x)qY(O, I)-xqY(1, f) 

where d’(x, t) = @(x, t) - D(X) 0); then (5a) reduces to an equivalent equation 

g + A(x, t; q5) 2 = S(x, t; 4) 

with &xi 0) = &O, t) = $( 1, t) = 0, .4(x, t; 4) = A(s, t;@j, and 

(5s) 
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For convenience of exposition, we shall restrict ourselves to (5b); corresponding 
expressions for @ are obtained by substituting for 4. Also @(x, 0) and an 
appropriate subset of {@JO, t), @,(l, t) >, p = 1 to m, will be assumed to be given 
so that a weak solution of (5a) and, hence, that of (5b), exists [l,p. 4711. Here ds, 
denotes the ,uth component of @. By definition of hyperbolicity, there are nz linearly 
independent eigenvectors corresponding to the (real) eigenvalues of A [ 1, p. 4241. 
It is then straightforward to construct an invertible matrix B such that 
BAB-’ = Ad, where Ad is a diagonal matrix [4]. The eigenvalues of A and Ad will 
be denoted by /2”, p = 1 to m. Let W= B(d) 4; then (5b) is equivalent to 

&;+ Ad(d) ;y= B(d) S(d) + W4) t+Ad(4)$$) 1 4 = s’(4). (6) 

For a fixed value of p, the solution of Eq. (6) may be obtained by solving the scalar 
equation 

a+) aa 
L(u)a(v)=dt+A(o)dx=s(u) 

with c$x, 0; V) = ~(0, t; u) = a( 1, t; u) = 0 and u is an arbitrary function in some 
neighborhood of 4. The solution component U’, of (6) is obtained for each value of 
p, by letting /2(0)=/2~(4), s(u) = S@(4) in (7), to obtain o(Q) = W,,, which deter- 
mines 4 = B-‘(d) W. In the following, we obtain G(U) as the image of v under a 
transformation and thus reduce (5) to a fixed-point equation. 

Consider (7) for a fixed function u and, at first, assume 1 to be an absolutely con- 
tinuous function and s, a square-integrable function of x and t. Let X be the 
Hilbert space of the square integrable functions of x and t on [0, 11 x CO, 7J, let L’ 
be the restriction of L to the absolutely continuous functions with the same boun- 
dary conditions as on cr, and let L’ be the adjoint of L’ in 2. The symbol ( , ) will 
denote the scalar product in 2. Also, let p be a solution of 

^ afa- 1 
(L+j-(z, T))(x, t)= -t-~(v) =(z= ($(z))(x, t) 

with p(z, T; x, T) = 0 and values at x = 0, 1 being arbitrary. It follows from (7) and 
(8) that 

T 

s s 

' do(x, t) 
=- dt p, 

0 0 z-x 

Thus the Stieltjes transform, defined by (l), of dc(x, T) is given by 

(9) 
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From (8) p is the solution of 

A differentiation with respect to T together with the identity .%(z, T;.u, T) = 0 yields 

i.e., 

and 

f(z, r; x, T) = ($(z))(x, T). 

Using the inversion formula (2b j, one has, from (9), for a fixed Z, that 

&f, T; 21) = -&.I i dz(s(v),f(z, T; ojj 
r, 

(11) 

where r, = r,., and ~(0, T) = 0. 
For the general case, A(v) may be approximated by a sequence of absolutely 

continuous functions, s(u) by the square-integrable ones, and f by the resulting 
sequence of solutions of (10). The representation given by (11) makes sense as long 
as the scalar product is well defined. 

The function OVAL is obtained from (11) by replacing v by 4. Since C$ = B-‘(d) R’? 
a fixed-point equation for 4 is given by 

where 

Here f “, is the solution of (10) with A = A”(d). 
Let P,,(X) be the orthogonal polynomials with respect to C&(X, T; 0); p,, depends 

on ,U and v. If one replaces l/l(z) by rjII(z), given by 

d 1 P,(X)- P,(z) 
(ti,z(z))(x, f) =-- dx P,(z) x - z 
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in the above treatment, then a moment approximant, cn (discontinuous), to 0 
results in 

wheref, is the solution of (10) with $(z) replaced by t,k,Jz). From (4a), CJ~ --+,+ sc (T. 
As above, a fixed-point equation for the corresponding approximation 4, to CJ~ is 
given by 

where 

Here again, ft is the solution of (10) with /z = A”(d,,) and $(z) = 11/Jz; 4,). 

4. REDUCTION TO THE METHOD OF CHARACTERISTICS 

Some reduction of the scalar product is desirable to develop a computationally 
feasible scheme to obtain an approximation to 4 based on (12) or (14). A lixed- 
point equation, C$ = B-‘(4) 9’4, for 4 may also be obtained by the method of 
characteristics for sufftciently smooth S, and A’. In the following, we show that 
there is a representation of the scalar product in (12) that reduces 9 to 9”. For 
this, it is sufficient to consider the expression given by (11) for (T and a fixed v. 

With S = s/L, ( 11) becomes 

(T(,Y, T)= -$.jrmdZj’dxjTdti(x, t)A(X,t)f(Z, T;X, t). (15) 
1 0 0 

The solution f of (10) may be obtained by the method of characteristics, to yield 

1 
, 

I 

where A, = CJn(x, t)/.3x and (a, t’) is the characteristic curve defined by 

ftZy T; x3 t, = Cz _ ef(x, t; 7312 exp 
[j 

Tdt’ A,(x(i, t; t’), t’) , 

i.e., 

-g=A(i, tl), 2(x, t; t) = x, 
1 

qx, t; t,)=x+ s ‘l dt’ &2(x, t; t’), t’). 
r 

(16) 
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It follows that 

295 

JoTdf 2(x, t)f(z, T;x, t)= -J-oTdfdyff;T) c _ ( f b.T),’ 
2 xx,, 

1 1 

=z-2(x., 0; T) 
-- 

. z - x 
il7) 

Now assume that for each x there is a t(x) such that 

jTd’S(X, t) 2(x, f)f(z, T;x, f) = S(x, T(X), jTdf 
0 0 

x A(.~, t)f(z, T; x, t). 

For sufficiently smooth functions, existence of such a Z(X) follows from the mean 
value theorem. Then from (15) and (17) one has that 

where p(s) = jg dy s”(y, T(Y)). 

On the other hand, if the same manipulations are used to reduce (13), one 
obtains 

= lim I ’ 44x) e,(-x), (19) n + -n 0 

where .f=I(x, 0; T). Equations (18) and (19) both, in conjunction with (2a) and 
(4a), respectively, lead to 

LT(,Y, T) = p(F) - p(.f(.U)), (20) 

where 1 is the inverse of a(x, 0; T), i.e., .?(-?(x, 0; T)) = .Y. 
By setting Z(.u. 0; T) = X in (16), one obtains 

s 

T 
i!(T) = .u - dt' n(q.2, 0; t'), t'). (21) 

0 

It is now straightforward to check that, if (x, T(S)) is the characteristic curve joining 
(.C, 0) and (X, T) and (7) is solved by the method of characteristics, then (20) 
results 
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Although the manipulations leading to (18), (19), and (20) are valid for a smooth 
p, the expressions are valid as long as p is a function of bounded variation; 2 and .? 
are clearly continuous functions of X, even for a (bounded) A that has discon- 
tinuities. Thus, by the usual limiting process, a p with discontinuities is admissible 
in (IS), (19), and (20). 

5. NUMERICAL SCHEME 

Let 1.~~1, k= 0, 1, . . . . N be a set of grid points. Our aim is to compute 
d(xk) = 4(x,, t, + dt) with 4(x,, to) being given. At each time point, by setting 
to = 0 and dt = T, the derivations of Sections 3 and 4 are valid as such. A standard 
and, in most cases, the simplest procedure to solve a fixed-point equation is by 
iteration. In the present situation, one may start with some approximate value &, to 
4 and obtain one, lVJ&,), to IV,(d) for each fixed value of p. Thus, a IV(&) is 
obtained that yields an approximation B-i(&) W(&) to 4. At the next step, the 
new approximation replaces 4,. This process is continued until a satisfactory level 
of accuracy is achieved. We shall take &(-)ck) = d(~,, 0) = 0, i.e., @Jx,) = @(x,, 0), 
and, for convenience in the computation, separate the first approximation and 
further iterative corrections to o(d). Let 

p,(x) = !I dy S(y, t(y); do) 

and 

~d-4 = t-44 -pow - rw) - wo)i 4. 
Then (20) may be written as 

a(Z, T) = o’(X, T) + a’(& T) (22) 

where 

and 

fJ = [B(d) 91,. 

If do is close to 4, the dominant term in u is go. 
Since no confusion will arise, A, = xk - xk- i will also denote the interval 

[x,-i,x,]. Let pk=xk-Z(xk) as defined by (21), and IP~/<A~,A~+~. This 
restriction does not allow time steps exceeding the Courant limit. The formalism 
has room for relaxing this restriction, but we shall not pursue it for the present. At 
each stage of iteration, (21) is a fixed-point equation in 1, which may itself be 
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solved by the same procedure with some starting value, e.g., xk. It is clear that 
,f(xk) is in A, or LI~+~. Assuming that pO(xR) is accurately determined for each k 
value, the evaluation of 0’ thus reduces to a problem of interpolation. Evaluation of 
the iterative correction a1 also reduces to the same problem, as shown by the exam- 
ple in Section 6. The general case differs from this one only in algebraic derails. 
However, since C’ is small for a sufficiently small vaiue of T, somewhat cruder 
approximations may be used. In the following, we concentrate on an accurate deter- 
mination of 17’. 

Standard methods of interpolation assume some profile, e.g.. a piecewise linear 
for pO. This should introduce diffusion at each time step. Here, we develop an inter- 
polation scheme based on a discontinuous profile for po. The value of go is given by 

where Qa’, h’; X) is the step function, which is equal to one in the interval [a’, b’] 
and zero otherwise; [a, 61 may be any interval contained in [0, l] such that x~: 1 
are in it. 

Similarly the following expression for co is obtained, starting with (19 j: 

The function 0J.u) is the sum of a polynomial in x and the one in a(.y, 0; T), and 1 
is a continuous function of X, even for a discontinuous 1. Hence, O,,(X) is a con- 
tinuous function of s. Now, let P,(X) be a moment approximant (discontinuous) to 
po. Then 

-I a”(.uk, T)= lim f~:Jx~, T)= lim J dP,(X) O,,(*~). 125) n, / - ,-x rr,l+x 0 

It is clear that CJ~[ is obtained by replacing 8 with a continuous 8,, and p. with a 
discontinuous pI in (23). A direct evaluation of G:, based on (25) is not possible for 
it requires the knowledge of the moments of g. Also, it is not computationally 
attractive, or even feasible, to obtain an accurate moment approximant to p0 
because p. is assumed to be known only at (~~1. The main import of the present 
representation, therefore, remains the realization of a possibility of approximating 
go by replacing p. with a discontinuous pa and 8 with a continuous 6, in (23) 

By reducing the interval of integration [a, 61 to one cell containing ,Y~, .?(x:,), 
one has that 

where x’ = s,- L for pk > 0 and x’ = xk+ I for pl; < 0; for Pk = 0, 6,(3ck, T? = 0. .Also, 
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let A=d,,p,>O; 4=A,+,,pk < 0; and c(~ = Ipk l/A, y(x) = (x - ?)/A. Set 
p,(~~) = p,,(x,) for each value of k, and let p,(x) have one point of discontinuity, as 
yet unspecified, in each of the intervals Ak with a jump [p,(x,) - pO(xk _ ,)I. For a 
sufficiently large value of N, this should approximate p,(x) well. For ak = 1, it 
follows from (23) that cr’(x,, T) = pO(xk) - po(x’). It would be desirable to preserve 
this exactness property. 

Equation (26) may be written as 

Let Pk = (tk - xkWk+ 1 ), where tk is the point of discontinuity of P,(X) in Ak+ ,) 
fl=Pk-i forp,>O, and b=l-bk forp,<O; we have that 

dXk, Tk8a(1, 1 --k; b)bOb%-~Ob-‘jl. (27) 

In view of the aforementioned difficulties, 0, and bx- are determined by somewhat 
heuristic arguments. Consider setting 

x 
1-c(‘l’ y<l-Cc 

f3,(1,1 -cr,y)= (33) 

l- !$(l-a) 1’3 1 -a. 

The function 6, thus defined has the following properties: For c( = 1, 8, = 1 for each 
1’ # 0, implying that the exactness property is preserved with any choice of /I # 0. 
For each ct and /? = 1 -elk, ga(xk, T) reduces to the value given by the linear 
interpolation of pa(x); thus (27) includes one of the standard approximations. For 
each a, 8, has range [0, 11: hence for any semimonotonic g(1)) that does not have 
discontinuities at 0, 1 and (1 - cx), there is a fl’ such that 

[l~g(~)e(l, i-~)=e,u, I-LK~‘) (g(l)-g(O)). 
JO 

If g(l;) is uniquely defined at these points, then they are not excluded. Piecewise 
semimonotonicity of pa(x) on each of the intervals A, is a milder requirement than 
piecewise linearity. For each CI = 0, 1, 0, is invertible; therefore, fl’ is uniquely deter- 
mined by g(y) and c(. Invertibility of 0, will help determine adequate values of pk in 
the following section. As a consequence of these properties, (28) offers an attractive 
choice for 6,. 

The procedure thus reduces to obtaining an approximation c?, to D, given by 

drr(-xk, T) = oa(-xk, T; ‘$0) + c;(-xk, T; ‘$0, d’,), (29) 

where et, is an approximation to or and cr, is given by (27). 
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Let P:(t) be a one-parameter group of transformations that determines 
(c$(x~, t’ + r)‘, from a knowledge of (4(x,, t’)); i.e., &x, t’ + I) = C(r) 4(,x, t’), 
where &.Y, t) = (4(x,, t)}. W e h ave obtained an approximation Pa to 0 except for 
the determination of (fll;). While a judicious choice of values for p,, may be made, a 
more adequate criterion for their determination is desirable. At the initial time 
point, these values may be assumed to be known, for they are determined by the 
initial data. At other time points, let - 7” be the time point preceding zero in the 
present coordinate system for the time variable. The invertibiiity of C!(t) implies that 
&x, -Tj=a(-Tj &x,0), since 4(x, 0) is obtained by the operation 
4(-u, 0) = P( T’) &I, - T’). We require that Pa be invertible to determine (Pkj. 

Let 4,(-t-, - T’) be the approximation to 4(x, - T’j, which determines &.x~ 0) in 
the present scheme. The requirement of invertibility of Pa is equivalent to 

o’(sx. - T’) = C&d&k)) dA.G> - T’)l,ti 

= cf‘,(-yk, -T’) 

= Qa(.Vk, - T’;(b,) + a&r,, -T; q&. cj,(?c> - T’)) (30) 

for each fixed ~1. Let (x’(x,), 0) and (x,, - T’) be on the same characteristic curve; 
s’(sR) is the counterpart for -T’ of -?(x~) for T. Further, let pk and XL be defined 
for -T’ as pli and ‘yh- were for T. Then 

GAXk, - T’j = 0,(1, 1 -a;, /?‘)[PO(-Yk) -.0,(X’)], (31) 

where fi’, x’= 1 -ljk, +ykfl for pi < 0 and /I’, X’ = flk, X- i for p; > 0. Thus 

e:, = 0,,( 1, 1 - cc;;. /I’) 

= [f/(x,, - T’) - (TA(Sk,, - T’;cp,. q5,(.u, - T))] /(po(x,) - p,(i)). (32) 

All of the quantities on the right side of (32) are known; hence, no iteration is 
required, although it is needed for the forward computation. The value of /I’ is now 
obtained by inverting 8,: 

If a value for 8’ in the interior of [0, I] is not found, then a judicious choice may 
be made, e.g., bh = 4 or I -n;. 

In the above, we have described a procedure to obtain a value for o. assuming a 
discontinuous profile for p, and a continuous approximation to 0,. An alternative 
value for CT~ may be obtained, by the same procedure, by interchanging the roles of 
p and 6. The two approximations may be used to derive an improved value using a 
variational principle. We explain these modifications in the Appendix. 
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6. EXAMPLE 

To illustrate the procedure described in Section 5, we will consider the conser- 
vation equations describing one-dimensional, inviscid, compressible fluid flow, 
namely 

a@ w@)=. 
at+- ax ' (34) 

where @ is a three-dimensional vector with its components @r, QD,, and @, 
being the mass, momentum, and energy density, respectively; F, = Q2, 
F7=4(3-1))x~~/~1+(y-1)~3. and F3 = yQ2Q3/@, - i(y - 1) @/@f; 1’ is the 
ratio of the specific heats. For an ideal gas, 7 = 1.4 and the initial conditions for the 
shock tube of References [3,4] are 

@p,(s, 0) = 1, 
1 

@2(x, 0) = 0, @3(x, 0) =- 
1’ - 1 

0 <,I- < 0.5 

@,(x, 0)=0.125, Q2(x, O)=O, Q3(x, O)=O.l,‘(y- 1) 0.5 <x< 1. 

The standard boundary conditions [ 1 l] imply that @>(O, t) = Q2( 1, t) = 0, and QX 
is given as a function of @r at the end points or vice versa. By setting AIL” = i3Fp/lWu 
and making the substitutions according to Eqs. (5a) and (5b), (34) reduces to (5b). 
With u = @J@, and c given by 

c2=?/()‘- l)(@j/@, +4”) 

the eigenvalues are given by A‘= U-C, d’= u, and A3 = u+ c, and B is easily 
constructed from the eigenvectors of A. 

With the present initial conditions. an advantage may be taken from the fact 
that, for a period of time, @(O, t) = @(O, 0) and @( 1, t) = @( 1,O). The case for more 
general initial conditions and/or for an arbitrary point in time differs from the 
present one only in some algebraic details. Also, to simplify the exposition further, a 
distinction between the exact and approximate quantities will not be made in the 
following. 

Consider (21) with X = xk and p having a fixed value. Then 

I 
T 

,f(Xk) = Xk - dr’ AAL(x, r’). 
0 

Assuming ,IP along the characteristic to be smooth enough that the integral may be 
approximated accurately, for small values of T, using the trapezoidal rule, we have 
that 

Z(xk) = xk -5 [A~((~~(x~), 0) + Ap(x,, T)]. (35) 
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The value of x’(x,) is obtained by replacing T with - T’ and Z(X~) with x’(x,) in 
(35) which may then be solved by iteration. Now, g: of (29) is given by 

Using again the trapezoidal rule, one has that 

CJ;(.K,<, T) = &{[B(x,, T)- B(l(x,),O)](@(x,, T) - @(x,, 0)) 

- (B(x,, T)- B(.u,, O))[@(xu,. 0)- @(.f(xk), O)]), 

- I(B(x~,T)-B(x~,O))~(.~~,, T)],,. (361 

Again T, .?(.u,) may be replaced by - T’, x’(.u,) to yield crA(x,, -T’) in (36). An 
advantage of (35) and (36) is that the evaluation of I(x,) and cr’(x,, T) has been 
reduced to interpolation of quantities at zero time and iteration at point sk. 
Computation of x’(x,) and (T,(x~, -T’) does not need iteration with respect to 
time. Interpolation may be carried out by a standard procedure or by the method 
described in Section 5 with a judicious choice of discontinuities. In view of the 
smallness of the iterative corrections, this should be satisfactory. Now, the jumps 
are given by 

(37) 

Since B is a continuous function of @,,, the jumps may be accurately determined by 
standard numericai methods. 

Equations (35 j-(37), together with (32))(33) yield the values of {Pkj. After 
having determined (fik3, (27), (29). (35)-(37) for T can be used to determine an 
iterative approximation to u = (B($,) d),, which, for each p value, enables one to 
compute the same to 4 and hence @. 

7. RESIJLTS AND DISCUSSION 

Results computed by the present method for the example in Section 6 are shown 
in Figs. 1 to 3, together with the exact values. One hundred equidistant positions in 
[O, l] were taken for (s/,~, and the time steps were chosen so that the maximum 
Courant number equaled 0.75. The values of {flkj were computed approximately by 
dropping r~f, in (32). This saved considerable computing time and reduced storage 
requirements without affecting the results significantly. 

Although there is some discrepancy between the exact and computed values, 
presumably as a consequence of several approximations made, significant 
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TIME = 0 1487 POINTS = 100 
1.25 , I I I 1 

0.00 \ I I I 
0.00 025 0.50 0.75 I .oo 

POSITION 

FIG. 1. Mass density profile, computed by the present method ( + ) and the exact values (solid line). 

improvements over some of the other methods are observed: spurious oscillations 
are absent, the resolution and accuracy of the location of the discontinuities are 
excellent; the constant state is adequately realized; and the diffusion is minimal. 
Among all the methods discussed in Ref. [3], only Glimm’s method preserves these 
properties, but the location of the discontinuities is significantly in error. The 
present method without iterations also preserves these properties to a large extent, 

TIME = 0.1487 POINTS = 100 

““7 

O.OOO, I .oo 
POSITION 

FIG. 2. Pressure profile, computed by the present method ( + ) and the exact values (solid line). 
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TIME = 0.1487 POINTS = 100 

““1 

0.25 0.50 0.75 

POSITION 

00 

FIG. 3. Velocity profile, computed by the present method ( + ) and the exact values (solid line) 

but the values in the constancy region were less accurate. The computing time for 
the present scheme without iterations compares favorably with one-step fmite- 
difference methods. With iterations sufficient to achieve the accuracy indicated in 
Figs. I to 3, computing time remains less than that required by the hybrid scheme 
reported in Ref. [4]. An increase in the Courant number to 0.9 and a reduction in 
the number of grid points to 50 affected the results only slightly but resulted in a 
considerable saving in computing time-in the present case, a factor of three 
reduction. Storage requirements are quite modest, involving only the grid poin-rs 
and the values of @ at the grid points at times - T’, 0. and T, in addition to a. fen 
M( =3)-vectors. 

While our aim was to develop a computationally attractive scheme to 
approximate numerically the solutions of a system of quasi-linear hyperbolic partiai 
differential equations, the representation obtained in Section 3 may be used for a 
qualitative study of weak solutions. The numerical procedure depends heavily on 
the interpolation method obtained in Section 5, which may also be applicable to 
other problems. 

APPENDIX 

Consider (23) and let g = a”(~,, T)/(p,(s,) - p,(x’)) and i(y) = [D&X,) - 
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where 0(r) = f3(1, 1 -a,; 7) and x’, 7, elk are as in (26)-(27). By replacing 6’ with 8, 
and I with [ 1 - 0( 1, /J; y)] in (A.l), we obtain an approximation 
y~r =&I, 1 - ak, p) to ‘1 given by (27). Alternatively, replacing c(y) with 
[, = [l - 19,(1, fi; r)] and leaving 0(l)) unchanged in (A.2) yield another 
approximation ?12 = 1 - @,(l, /?; 1 -c(~) to 11. An efficient use of the two may be 
made by using the variational principle as follows. At first we assume [ and 6 to be 
the absolutely continuous functions of ‘1’; the final expressions admit functions with 
discontinuities. 

Let 3 be the Hilbert space of square-integrable functions of 1’ on [IO, i] equip- 
ped with the usual scalar product denoted by (, ). Let C be an operator on 3 and 

cy = 5, cy = 51, 

where Ct is the adjoint of C. Then the functionals F, and F2 defined by 

F,(L, x:1= <xh, 15) + (4’3 xc,> - CL CL> (A.31 

and 

(A.4) 

are stationary with respect to small variations of x, and xi, about the exact 
solutions x and x’ and F1(x, x’) = F,(x, x’) = (x’, t) = (c’, ,Y). Thus, if (XL, t) and 
(l’, x,) are first-order-accurate approximations, F, and F, are second-order 
accurate. Note that, for certain forms of xU and I:, the stationary values of F, and 
F2 are the same ClZ]. 

Let C= -d/‘&, defined on absolutely continuous functions that vanish at 1, 
and thus C?=d/dy, defined on functions that vanish at zero; then 
g = (0, Cl> = (CtN, i). Thus, variational expressions for ~1 may be obtained by 
further substituting x, = [,, XL = 0,, c= -S(pp), <‘=h(y-(l-a,)) in (A.3) 
and (A.4), where 6 denotes the Dirac delta function. This results in 
(xb, 0 = vl, (t’, x,) = r2, and 

11-2/I c$ -.- 

cd, CL> = <em CL) = 
‘12+2 1-p 1-E 

p<1-a 

(A.51 

y/2+2 p e+?!.q(l-p) p31-a. 

One may also consider 8, and i, to be parameter dependent, and their values 
may be determined by requiring F, or F2 to be stationary. Similar considerations 
apply to tI:, in (32). 
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